Challenges Related to Memory Cluster Tests
Roger Sowada - Honeywell
May XX, 2007
Background Test and Philosophy

• Industry desires:
 – Identify issues at the earliest possible stage of a test program
 – Diagnostics to pin point and resolve issues
 – Low cost testing
 – High test coverage
 – Reuse of test software, equipment, automation etc.
Background Test and Philosophy

• Design for Testability (DFT)
 – Method/process to assure industry desires
 – Requires discipline, analysis and buy-in
 – Test and Equipment expertise up front on design
 – Design hooks required to allow capability
 – Target 90% or higher coverage
Background Test and Philosophy

• DFT Reality:
 – Designers do not like adding circuitry
 – Designers do not want testability driving design
 – Limitations may be driven by requirements
 – Methods require hooks to allow test mode
 – Test methods at times increase initial cost
 – Conventional methods, boundary scan, In-Circuit Test (ICT) etc. much more complex with advances in technology
Background Test and Philosophy

• Options for test coverage
 – Functional Test
 – Boundary Scan, ICT or a combination
 – Other: P1581
Memory Test Approaches (Board/System)

• Functional Test
 – Memory functional dependant on control device
 – Timing impacts and interface issues
 – Coding overhead: (8000 to 25000 SLOC)
 • SLOC - Single Lines of Code
 – Code complexity, need multiple patterns
 – Timing and sequences vary based on technology
Memory Test Approaches (Board/System)

• Functional Test
 – Test resource control access required
 – Design must be well thought out up front
 – Operating system impacts
 – Internal network impacts to sequencing
 – Memory sequence and test duration impacts
Memory Test Approaches (Board/System)

- **Boundary Scan**
 - BSDL file accuracy dependent on vendor
 - Tool knowledge and compatibility
 - Vector count and length increases complexity
 - Serial technology increases test time
 - Long paths increase maintenance/debug time
 - Some memory technologies non-compliant
• ICT
 – Fixtures drive overall cost and complexity
 – Decreasing technology sizes cause access and coverage issues
 – Need ability for board control
 – Processor must be stopped for memory control
 – Dual-sided boards, ICT increases complexity and cost
 – Noise issues for sensitive boards
 – Design complexity drives abilities to integrate/debug
Memory Test Approaches (Board/System)

• Boundary Scan and ICT Combination
 – Combination allows for increased coverage
 – Many parts do not include boundary scan
 – ICT will aid in cluster test process
 – ICT aids in discrete component verification
 – Clock signals must be controllable
 – Increases test complexity
 – Technology shrinking ---- pin reliability
Memory Test Approaches - Example

- Processor
- Processor Support ASIC
- Flash Memory
- SRAM
- DPSRAM

Connections:
- Processor to Processor Support ASIC: SYSAD Bus
- Processor Support ASIC to Flash Memory: MEM_ADD / MEM_DATA / MEM_CNTL
- Processor Support ASIC to SRAM: ADDR/CNTL
- Processor Support ASIC to DPSRAM: ADDR/CNTL
- JTAG SCAN connection
Memory Test Approaches - Example
Memory Test Approaches (Board/System)

• Other - IEEE P1581
 – No dependence on special design and timing
 – Solution provides full pin level diagnostics
 – May be implemented as part of the build process
 – If components are "known good" will reduce requirements on verification later in cycle
 – Additional features (i.e. device ID etc.)
 – Capability to use in conjunction with other methods
Memory Test Approaches -- Summary

• Many approaches, P1581 is a cost effective solution
• P1581 does not eliminate or replace other methods
• Boundary Scan, ICT viable but usually later in verification cycle
• P1581 increases testability coverage without need for detailed analyses
1581 Food for Thought -- Opinions

- Cost of P1581 logic will pay for itself in benefit to DFT
- P1581 future uses could include version control and verification
- Diagnostic adder -- Selling point for COTS providers
- Good go/no-go verification for test systems
- P1581 could provide argument for reduction of conventional functional testing